Extensions 1→N→G→Q→1 with N=C3xC62 and Q=C2

Direct product G=NxQ with N=C3xC62 and Q=C2
dρLabelID
C63216C6^3216,177

Semidirect products G=N:Q with N=C3xC62 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC62):1C2 = D4xC33φ: C2/C1C2 ⊆ Aut C3xC62108(C3xC6^2):1C2216,151
(C3xC62):2C2 = C32xC3:D4φ: C2/C1C2 ⊆ Aut C3xC6236(C3xC6^2):2C2216,139
(C3xC62):3C2 = C3xC32:7D4φ: C2/C1C2 ⊆ Aut C3xC6236(C3xC6^2):3C2216,144
(C3xC62):4C2 = C33:15D4φ: C2/C1C2 ⊆ Aut C3xC62108(C3xC6^2):4C2216,149
(C3xC62):5C2 = S3xC62φ: C2/C1C2 ⊆ Aut C3xC6272(C3xC6^2):5C2216,174
(C3xC62):6C2 = C2xC6xC3:S3φ: C2/C1C2 ⊆ Aut C3xC6272(C3xC6^2):6C2216,175
(C3xC62):7C2 = C22xC33:C2φ: C2/C1C2 ⊆ Aut C3xC62108(C3xC6^2):7C2216,176

Non-split extensions G=N.Q with N=C3xC62 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3xC62).1C2 = Dic3xC3xC6φ: C2/C1C2 ⊆ Aut C3xC6272(C3xC6^2).1C2216,138
(C3xC62).2C2 = C6xC3:Dic3φ: C2/C1C2 ⊆ Aut C3xC6272(C3xC6^2).2C2216,143
(C3xC62).3C2 = C2xC33:5C4φ: C2/C1C2 ⊆ Aut C3xC62216(C3xC6^2).3C2216,148

׿
x
:
Z
F
o
wr
Q
<